The many faces of Android fragmentation

[Android fragmentation is only getting started. Research Director Andreas Constantinou breaks down the 3 dimensions of Android fragmentation and argues how Android will become a victim of its own success]
The article is also available in Chinese.

There’s been plenty of talk of Android fragmentation, but little analysis of its meaning and impacts.

As far as definitions go, the best way to look at fragmentation is not from an API viewpoint, but from an application viewpoint; if you take the top-10,000  (free and paid) apps on Android, how many of these run on all the Android-powered phones?

For Google’s Android team, fragmentation is what keeps them up at night. Fragmentation reduces the addressable market of applications, increases the cost of development and could ultimately break the developer story around Android as we ‘ll see.

Google’s CTS (compatibility test spec) is predicated on ensuring that Market apps run on every Android phone. Android handsets have to pass CTS in order to get access to private codelines, the Market or the Android trademark as we covered in our earlier analysis of Google’s 8 control points – and yes, Google controls what partners do with Android, contrary to the Engadget story.

The 3 dimensions of Android fragmentation
Many observers would point to fragmentation arising as a result of the open source (APL2) license attached to the Android public source code. Reality however is much more complex. There are 3 dimensions of Android fragmentation:

1. Codebase fragmentation. Very few companies have taken the approach of forking the public Android codebase, as permitted under the APL2 license; Google innovates so fast (5 major versions in 12 months) that once you fork, the costs of keeping up-to-date with Google’s tip-of-tree are increasing prohibitively over time (Nokia found out the hard way by forking WebKit and then regretting it).

The main fork of the Android codebase is by China Mobile (the world’s biggest operator with over 500M subscribers) who has outsourced Android development to software company Borqs. China Mobile cares less about keeping up-to-date with the latest Android features as the China market operates as an island where cheap, fake (Shanzai) handsets are predominant. Mediatek, a leading vendor of chipsets shipping in 200-300 million handsets per year plans to make Android available, which could mean another major fork. Cyanogen and GeeksPhone also fork the Android public codeline, but they are designed for a niche of tech-savvy Android fans.

2. Release fragmentation. Google has released 5 major updates to Android in 12 months (1.5, 1.6, 2.0, 2.1 and recently 2.2), all of which introduce major features and often API breaks. You may notice how accessing the Android Market from a 1.6 versus a 2.1 handset gives you a different set of apps. So much for forward compatibility. AndroidFragmentation.com (a community project) has documented several cases of release fragmentation arising from releases which break APIs (e.g. 2.0 SDK breaks older contact apps) or from inconsistent OEM implementations (e.g. receiving multicast messages over WiFi is disabled for most HTC devices).

Release fragmentation is the victim of Google’s own speed of innovation – and Andy Rubin has hinted there’s more major releases coming out in the next 6 months. It’s clearly a sign of how young, agile Internet companies know how to develop software much better that companies with a mobile legacy; major Symbian versions take 12-18 months to release.

Release fragmentation is particularly acute due to the lack limited availability of an automatic update mechanism much like that found on the iPhone. We call the phenomenon ‘runtime aging’ and it is directly responsible for increasing the cost of developing applications. Tier-1 network operators see handsets in their installed base with browsers which are 1-6 years old – that’s how hairy it can get for mobile content (and software) development companies. [update: we understand that certain Android handsets come with a firmware update (FOTA) solution available from Google and other FOTA vendors, but it is installed reactively (i.e. to avoid handset recalls) rather than proactively (i.e. to update all handsets to the latest OS flavour)].

Google itself reports that the Android installed base is split between devices running 1.5, 1.6 and 2.1 versions (or at least for those devices accessing the Android Market). The detailed breakdown as of mid May 2010 is as follows:

Release fragmentation is also arises out of Google’s elitist treatment of its OEM partners. Google will pick and choose which private codeline is available to which OEM based on commercial criteria (contrary to Michael Gartenberg’s story). Take for example how Sony Ericsson’s X10 (running on Android 1.6) came to market after the Nexus One (running on Android 2.1). Ironically, both handsets were made by HTC. [correction: the X10 was developed by Sony Ericsson Japan]

3. Profile fragmentation. Android was designed for volume smartphones. But it arrived at an opportune time – just after the iPhone launch and just as consumer electronics manufacturers were looking at how to develop connected devices. This resulted in two effects that Google hadn’t planned for:

– Android was taken up by all tier-1 (and many tier-2) operators/carriers hoping to develop iPhone-like devices at cheaper prices (i.e. lower subsidies) and greater differentiation. That meant that while operators funded Android’s adolescent years (2008-2010), they niched Android handsets to high-end features and smartphone price points.

– Android is now being taken up by 10s of consumer electronics manufacturers, from car displays and set-top boxes to tablets, DECT phones and picture frames. The Archos internet tablet was just the beginning. Each of these devices has very different requirements and therefore results in different platform profiles.

The timing of Android’s entry into the market has therefore resulted in two implications related to fragmentation.

Firstly, Android’s official codebase isn’t suited for mass-market handsets (think ARM9 or ARM11, 200-500MHz). To get to really large volumes (100M+ annually), Google will need to sanction a second Android profile for mass-market devices. This is a Catch-22, as a second profile is needed to hit large volumes, but it would also break the Android developer story.

Secondly, every new platform profile designed for different form factors (in-car, set-top box, tablet, etc) will create API variations that will be hard to manage. That’s one of the key reasons behind the Google TV initiative and the Open Embedded Software Foundation. However even Google can’t move fast enough to coordinate (manage?) the 10s of use cases and form factors emerging for Android.

All in all, Android fragmentation is going to get far worse, as Android becomes a victim of its own success.But hey, would you expect to have a single app (and a single codebase) that runs on your TV, phone and car?

And there the opportunity lies for tools vendors to provide app porting tools, compatibility test tools and SDKs to help bridge the gap across the eventual jungle of Android fragmentation. And for those looking to better understand the Android commercials we offer a half-day training course on the commercial dynamics behind Android.

What do readers think? Do you have any fragmentation stories to share?

– Andreas
you should follow me on twitter: @andreascon

An X-ray of Mobile Software: The 11 vital organs of mobile

[Sales of mobile phones remain healthy, but can the same be said of the software designed for them? Guest author Morten Grauballe offers a biological metaphor to check the pulse and visualise the evolution of the mobile software business.]

The app store “Long Tail” has recently dominated strategy discussions in the mobile industry. The Long Tail is a captivating and inspiring notion that challenges companies to think beyond mass production and mass retailing. The mobile software market is, however, far from mass production and mass retailing. Tight coupling of software and hardware, combined with platform fragmentation, have created a mass market for mobile phones, but not for mobile software. Hence, the tail is wagging the dog (and its organs) in the mobile software strategy discussion.

I ‘d like to use a biological metaphor – the notion of the 11-Organ System – to represent the core value-adding elements in mobile software and discuss how Apple, China Mobile, DoCoMo, Google, Nokia and RIM have utilised these core organs to their benefit. The 11 Organs interact to create the mobile software.

The Long Tail App Store
The Long Tail concept was coined in a 2004 article by Wired Magazine editor Chris Anderson to describe the notion that a large share of consumer needs rest within the tail of a statistical normal distribution. From a marketer’s perspective, this means you need to sell large quantities of unique items – each in small quantities – often combined with large quantities of a few very popular items.

The idea was coined to describe phenomena in online retailing where companies such as Amazon for books and eBay for auctions were able to cater – profitably – to very small, unique segments of the market. The digital economy allows these retailers to decouple stock from purchase. Later, the notion was proven to apply to some of the most successful business models today, namely Apple’s iTunes music store and Google’s search advertising model.

Lately, the Long Tail has been used to describe and propagate one of the biggest hype waves in the mobile market, namely the app store. Apple recently passed 200,000 applications in its store; fanning the enthusiasm for all major players to develop their own app store strategy.

Whereas books, auctions, music, and to some extent search are well-understood businesses with relatively straight-forward Long Tail effects, the essence of the mobile software business is generally not well understood and analyzed. So, before we pin the app store Long Tail on Eeyore, it is worth taking off the blindfold in an attempt to understand the essence of mobile software.

The Organ Systems of Mobile Software
Like biological systems, the software on mobile phones has value-creating subsystems. The Long Tail app store is like the tail on mammals. It does not have a function without being attached to a healthy body full of strong and interconnected value-creating systems. Apple knows this. Google knows this. Nokia knows this. DoCoMo knows this. They all have strategies in place for these value-creating systems.

Mammals generally have 11 organ systems (see note at the end of the article for a biology refresh). To stay true to my metaphor, I break down the most advanced smartphones into 11 organ systems – five core infrastructure systems and six application level systems. There are of course many more ways these systems can be broken down (see VisionMobile’s Industry Atlas for examples).

The five infrastructure core systems are:

  • Operating system: On a high level, the key value of an operating system is to be found in the abstraction of the hardware into a set of APIs against which applications can be written. More fundamentally, this process of abstraction has a significant impact on the characteristics of the system, including usability, battery life and privacy. There is a long discussion taking place within the industry as to whether the OS is a commodity or not – I believe not, but I ‘ll leave that debate is for future article. Let’s instead list the current choices available in the mobile market: Android, Bada, Blackberry OS, Brew Mobile Platform (BMP), iPhone OS, LiMo, Maemo, MediaTek OS, Nucleus, Series 40, STE OS, Symbian, Web OS and Windows Phone OS.
  • Application Execution Environments (AEEs): Most phones have one or more AEEs that attract developers and hence enhance the ability to “wag the tail”. The list of AEEs is long, but should include Java, Flash, widget and and web runtimes. AEEs and operating systems are generally complementary, but as the recent spat between Adobe and Apple has shown, these value-creating systems do not always coexist peacefully.
  • Software Management System: From a strategy analysis perspective, this is probably one of the fastest developing value-creating subsystems. Software management addresses two ‘bodily functions’:
    • The in-the-hands user experience. Apple has made 22 versions available for its phones since June 29, 2007. That is one release every 6 weeks. Most of the features released have addressed the user experience by enhancing features or the usage of features. In the end, this generates revenue and builds an ongoing relationship with the user.
    • Repair and correction. The ability to protect the phone depends on the strength of the security system (see below), but also on the system’s ability to respond to issues in the system, whether malware or not. Software Management allows us to respond with new pieces of software when needed.
  • Security System: The security system is very similar to the integumentary and lymphatic systems in humans. It protects the system from external threats. Parts of the security system should be built into the operating system, but other parts are application-level components, such as lock and wipe of the device.
  • Business Intelligence System: Similar to the nervous system, the business intelligence system allows you to understand what is going on in the entire organism. This ranges from understanding usability issues over performance problems to actual defects in the system. You want to know what works and what does not work for the particular user, which apps are used the most, which services work and which not, how does service usage vary across devices, etc.

The six core application systems are:

  • Peer-to-Peer Communication: Voice communication is often overlooked in strategy discussions of mobile software, but it is one of the most used applications on any mobile phone. It might be a baseline feature, but it needs to be done well. Integration with other value-adding subsystems is quite important too.
  • Peer-to-Peer Messaging: This includes everything from SMS over instant messaging to push e-mail applications. Similar to peer-to-peer communication, it is generally not considered sexy at this stage of the market. It is however the second largest revenue generator after voice communication and thus should not be disregarded.
  • Search: Most phones already have Web search functions. However, the future of search is in the location-based services (LBS) area, where digital search is combined with the physical presence of the user. Advertising is a part of this subsystem as it connects sellers with buyers of products and services.
  • Content Creation: The biggest craze in the market is social networking. Every new phone has social networking capabilities galore closely integrated into the contact manager. Content creation, however, also includes pictures, video and other types of media produced by the consumer. Most of the data produced by the consumer needs to be shared somehow. That is where the key value creation of the mobile phone comes in.. sharing!
  • Content Consumption: Compared to creation, content consumption is so yesterday. The consumer expects easy access to a catalogue of games, music, video, etc.
  • Browsing: This is such a crucial application that I have classified it as a system of its own. The browser is used as the basis of many of the other systems. Actually, most of the other applications can run via the browser and hence it is even possible to classify the browsing subsystem as an infrastructure subsystem.

Choose your Organs before Pinning on the Long Tail
There is no need to have the perfect business model for each of the mobile software organ systems above, but you need to have considered all of them and, if possible, have three or four strong organs to support an independent software strategy that can then carry a Long Tail app store. Let’s consider a few examples:

  • Apple has been the most aggressive on the OS side, publishing native APIs to developers and building a large developer community. Apple’s software management strategy is well-synced with its OS development and is a real strength. With iTunes Apple also is very well placed in media consumption. Apple’s weaknesses are in the areas of AEEs and search.
  • China Mobile has recently put its weight behind the OPhone, which is running a completely customized branch of Android. The OPhone version of Android is managed by a company called Borqs. At launch, handsets were available from Dell, HTC and Lenovo with plans for further handset models from Samsung, ZTE, Phillips, Motorola and LG. By having Borqs in between Google and themselves, CMCC achieves greater ownership of the operating system and its APIs. This is, of course, expensive as Borqs need to track new versions of Android and migrate China Mobile-specific changes across to the new versions of the OPhone OS.
  • DoCoMo has traditionally been focused on content-consumption and browsing with its i-mode services. i-mode nicely mixes Java, Browsing, Flash and e-mail into a very strong application suite. Customers know what they are getting. These services are built on top of two different operating systems, namely Linux and Symbian. So far, DoCoMo has not exposed native APIs to developers, but has focused on Java. The content market is therefore very strong in Japan, but the software application market is not well developed. Recently, DoCoMo has released its first Android handset, the Sony Ericsson Xperia X10, which gives it access to the Android market. This is the company’s first experience with an application market.
  • Google has combined the introduction of the Android operating with a strong suite of applications (Gmail, Google Maps, GTalk and Android market). While on the surface Android is an open source project, you only get access to the application suite if you agree to Google’s commercial terms.  There is no surprise that Google’s strengths come from its applications – it has less control of the core infrastructure components.
  • RIM has full control of its OS and has used Java as the AEE to create a third-party community of developers. The real strength in the RIM offering, however, is peer-to-peer messaging and this is the subsystem that ties RIM to its users. Over the last three years, RIM has made improvements to the subsystems that are more focused on mass-market consumers, such as content consumption/creation, but it is not considered to be its strength.
  • Nokia is active in all the subsystems above. Focus is probably one of the weaknesses of the Nokia offering. Traditionally, Nokia has been focused on peer-to-peer messaging and communication, but recently it has moved aggressively into search and content consumption, which are emerging as their new areas of strength.

Taking inspiration from Blue Ocean Strategy, it is possible to create an Organ Map. I have included an example below. (Each area included in this map warrants its own discussion, so please take it as an educated view rather than a universal statement of truth).

Getting started on your own Organ Map
Any serious player looking at the app store Long Tail needs to look at the organ system above and decide how to build a serious software strategy first. Some companies, like HP with their Palm acquisition, are at a cross-road and should make tough choices up-front. Others are in the middle of executing on their software strategy and need to evaluate progress. In both cases, key questions to answer are:

–        Which organ systems are the focus of my strategy?

–        What is the right mix of core organs to application organs?

–        What level of control do you want to exert over each organ system?

–        How will the chosen organ system allow me to build a relationship with my customer?

–        How do the organ systems interact to realize value for the customer?

–        How are my organ systems mapping against the competition?

Through the discussion around these questions, you should document the criteria by which you and your organizations determine the scoring of each organ system. That will answer questions like, what is a high-end offering in the browser space and who is offering this in the market.

To have a truly independent strategy, the choice of organ systems need to include at least one core organ system over which you can exert a high-degree of control. This does not have to be complete ownership of the organ system, but you should be able to determine the roadmap and direction of the organ system.

The Long Tail as a Greenhouse for New Organ Systems
Once you have a nice set of organ systems up and running, the real point of the Long Tail app store is to act as a greenhouse for new organ systems. By monitoring the sales statistics and trends on your app store, you get a very good view (from your business intelligence system) as to what the next organ system might be.

It is no coincidence Apple just added iAd to iPhone OS v4. They are on top of their business intelligence game and have been tracking advertising in their app store for a while. As apps or features develop into viable businesses, they get promoted from the tail to the body. They become new organ systems for the value-creation machine called Apple.

What are your own thoughts on strategy as a biology metaphor? What other examples of use of software-based organ systems have you come across? What Organ Systems does HP currently have that would render Palm as successful business? Which new ones should they build?

– Morten

[Morten Grauballe is EVP Marketing at Red Bend and ex VP Product Management at Symbian, and has been in the mobile industry long enough to boast both scars and medals]

Note 1: The 11 major organ systems of the body are:

(1) The integumentary system is the organ system that protects the body from damage – it includes nails, skin, hair, fat, etc. This is the largest system making up ~16% of the human body.

(2) The skeletal system is the structural support system with bones, cartilage, ligaments and tendons.

(3) The muscular system is the anatomical system of a species that allows it to move.

(4) The nervous system is an organ system containing a network of specialized cells called neurons that coordinate the actions of an animal and transmit signals between different parts of its body

(5) The endocrine system is a system of glands, each of which secretes a type of hormone to regulate the body. The endocrine system is an information signal system much like the nervous system. Hormones regulate many functions of an organism, including mood, growth and development, tissue function, and metabolism.

(6) The circulatory system is an organ system that passes nutrients (such as amino acids and electrolytes), gases, hormones, blood cells, etc. to and from cells in the body

(7) The lymphatic system in vertebrates is a network of conduits that carry a clear fluid called lymph. It is used to fight diseases and transport fluids from the cells.

(8) The respiratory system’s function is to allow oxygen exchange through all parts of the body.

(9) The digestive system is the organ system responsible for the mechanical and chemical breaking down of food into smaller components that can be absorbed into the blood stream.

(10) The urinary system is the organ system that produces, stores, and eliminates urine.

(11) The reproductive system is a system of organs within an organism that work together for the purpose of reproduction.

Breaking the 500 million barrier of mobile software

[Which are the most ubiquitous mobile software products out there? Marketing Manager Matos Kapetanakis opens up our 5th edition of the 100 Million Club, the watchlist of embedded software products and talks about the really big numbers of mobile software.]

Welcome to the H2 2009 edition of the 100 Million Club, the semi-annual watchlist of mobile software products that have been embedded in more than 100 million mobile devices since their release. Despite the apparent opportunity in the one-billion-a-year handset market, very few software companies have managed to overcome the commercial and technical challenges inherent in the mobile industry.

Key highlights in this H2 2009 edition:

– “The cumulative number of shipments of all the 100 Million Club software products up to the end of 2009 is 24.6 billion – an 11% increase since the previous half”

– “The estimated 250 million cumulative shipments for Apple’s WebKit show that it is fast becoming a de facto browser platform.”

– “BlackBerry is the next smartphone platform, after Symbian, that will break through the 100 million shipments barrier.”

What’s new in H2 2009?
So, what major changes have we seen since our previous update?

First off we’re happy to welcome three new entrants to the Club: ARM, Mimer and Numonyx have joined, adding three new middleware products to our watchlist. Mimer has just broken the 100 million barrier with its SQL database engine, while ARM brings us Mali-JSR184, a 3D graphics engine for wireless devices. The Flash Data Integrator by Numonyx is already ahead of the game, having been shipped in more than 900 million devices.

We have also had to remove three software products that have long been part of the Club. For different reasons, Mobile BAE by Beatnik and Picsel’s File Viewer are no longer part of the 100 Million Club, while Nokia’s Series 60 OS has been incorporated in the Symbian OS.

(click to download)

Growth in the 100 Million Club
The H2 2009 edition of the 100 Million Club is comprised of 30 software products by 26 companies. The total number of shipments of all 30 products, up to the end of 2009, comes to 24.6 billion – an 11% increase since the previous half.

In the previous edition, the Club featured 15 software products that exceeded 500 million shipments, 6 of which had also broken through the 1 billion barrier. The H2 2009 edition features 17 products with more than 500 million sales, 7 of which have surpassed 1 billion shipments. In other words, for the first time the majority of the products featured in the 100 Million Club have over 500 million shipments.

In the second half of 2009, CAPS by Scalado and OKL4 by Open Kernel Labs managed to break through the 500 million barrier, while Myriad Group’s messaging client and Nokia’s Series 40 OS now have more than 1 billion shipments each.

Category leaders: apps, browsers, middleware and operating systems
Quickoffice wins by default in the embedded applications category, since it’s the only embedded application featured in the 100 Million Club.

Adobe is still number one in the application environments category, with Flash/Flash Lite having been embedded in more than 1.3 billion devices up to the end of 2009. The growth of Flash Lite has decelerated significantly from 43% (1H09) to 15% (2H09) as share of devices sold with the software embedded; however the pace should be picking up pace again with Flash shipments later in 2010.

Myriad Group, whose browser has almost twice as many shipments as the other category products combined, dominates the browser market.

In the middleware category things are not that clear, due to the diversity of products. In absolute numbers, the messaging client by Myriad Group has the most shipments (1.2B) and vRapid Mobile by Red Bend shows the highest of growth over the second half of 2009. UI software is also highly penetrated within mobile devices, led by graphics engines by Ikivo, Scalado and The Astonishing Tribe which are at or around the 500 million mark.

The operating system market features 6 products that have been embedded in more than 1 billion devices. It’s worth noting that mass-appeal operating systems like OSE, Nucleus and recently Series 40 have cumulative shipments numbering in the billions, while BREW has just broken past the 500 million mark. In contrast, most major smartphone platforms – Android, OSX, Windows Mobile, BlackBerry – apart from Symbian have yet to reach 100 million shipments.

Finally, the input engines category features two products, both by Nuance inherited from the past acquisitions of Tegic and Zi Corp. As is evident in the chart, T9/XT9 is by far the most prominent, having been embedded in a staggering 4.8 billion mobile devices up to the end of the second half of 2009.

100 Million Club facts and trends

Two companies account for 38% of shipments: Only two companies have multiple software products included in the 100 Million Club, each company featuring three products. The cumulative number of shipments of these two companies is 9.5 billion, representing 38% of all 100 Million Club products’ shipments up to the end of H2 2009. The software products are Myriad Group’s Browser, messaging client and Jbed and Nuance’s T9/XT9, eZiText and VSuite.

WebKit on the rise: We estimate that up to the end of 2009 WebKit, the open source browser engine, has been embedded in more than 250 million devices. WebKit owes most of its market penetration to Nokia (Symbian shipments with the Series 40 contribution picking up), while its recent adoption by RIM can only accelerate its market penetration.

Top revenue models: In this edition, we asked the 100 Million Club members to provide us with the top two revenue models for their products. The responses revealed that the most common revenue models for embedded software are per-unit royalties,followed by NRE (non-recurring engineering fees) for product integration or customisation. Despite the tight profit margins, handset OEMs and network operators are still paying for software on a per-unit basis, with the ‘paradigm shift’ to per-active user revenue models taking longer than most would have expected.

What’s in stock for the 100 Million Club
Our watchlist continues to grow, as more products make it past 100 million shipments. Blackberry should be entering the Club in the next edition (H1 2010), with OSX, Windows Mobile and the much younger Android lagging a further 6-18 months behind.

The bigger picture of mobile software is very different than the industry hype would have us think.

– Matos